THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2018) Tutorial 1

Tongou Yang

- 1. Let $f:[a,b]\to\mathbb{R}$ be a function and $c\in(a,b)$.
 - (a) State the definition of differentiability of f at c.
 - (b) Recall we have the theorem:

Theorem 1. Let $f:[a,b] \to \mathbb{R}$ be a function and $c \in (a,b)$. Then f is differentiable at c if and only if there exists a function $g:[a,b] \to \mathbb{R}$ which is continuous at c such that

$$f(x) - f(c) = g(x)(x - c),$$

where g(c) = f'(c).

Using the theorem above, show the following theorem:

Theorem 2. (Chain Rule) Let $f : [a,b] \to [d,e]$, $g : [d,e] \to \mathbb{R}$, $c \in (a,b)$, $f(x) \in (d,e)$. Suppose f is differentiable at c and g is differentiable at f(c). Show that the composite function $g \circ f$ is differentiable at c, and that

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$$

(c) What is the problem with the following "proof"?

$$\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}$$

$$= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

$$= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

$$= \lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c}, \text{ since } f \text{ is continuous at } c.$$

$$= g'(f(c)) \cdot f'(c)$$

- 2. (a) Show that if $f:(a,b) \to \mathbb{R}$ has strictly positive derivative at $c \in (a,b)$, then there exists $\delta > 0$ such that for any $c \delta < x < c < y < c + \delta$, we have f(x) < f(c) < f(y).
 - (b) With the same condition, could we get a stronger result that there exists $\delta > 0$ such that for any $c \delta < x < y < c + \delta$, we have f(x) < f(y)? (Hint: Consider the function)

$$f(x) := \begin{cases} x + 2x^2 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

1

(c) Solution:

The function below satisfies f'(0) = 1 > 0 (by definition) but f is not increasing on any neighbourhood of 0.

$$f(x) := \begin{cases} x + 2x^2 \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Proof. Let $\delta > 0$ be arbitrary. Consider two points $x := \frac{1}{2n\pi + \frac{\pi}{2}}$, $y := \frac{1}{2n\pi - \frac{\pi}{2}}$ where n is large enough so that $0 < x < y < \delta$. And we have $f(x) - f(y) = x + 2x^2 - y + 2y^2$.

REMARK: Correction on 15th Jan's tutorial Instead, to see f(x) - f(y) > 0, just directly use $\frac{1}{x} - \frac{1}{y} = \pi$, we have $f(x) - f(y) = 2x^2 - \pi xy + 2y^2$ and Cauchy Schwarz inequality tells us the result. Hence f is not increasing on any neighbourhood of 0.

3. We consider some explicit examples.

- (a) Consider $f(x) := \sqrt{x}$ defined on $[0, \infty)$. Show that f is differentiable on $(0, \infty)$ but not at 0.
- (b) Consider $f(x) := x \sin(\frac{1}{x})$ defined on $x \neq 0$ and f(0) := 0. Show that f is not differentiable at 0.
- (c) Consider $f(x) := x^2 \sin(\frac{1}{x})$ defined on $x \neq 0$ and f(0) := 0. Show that f is differentiable everywhere on \mathbb{R} but f'(x) is not continuous.