THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2018) Tutorial 1

Tongou Yang

1. Let $f : [a, b] \to \mathbb{R}$ be a function and $c \in (a, b)$.

- (a) State the definition of differentiability of f at c .
- (b) Recall we have the theorem:

Theorem 1. Let $f : [a, b] \to \mathbb{R}$ be a function and $c \in (a, b)$. Then f is differentiable at c if and only if there exists a function $q : [a, b] \to \mathbb{R}$ which is continuous at c such that

$$
f(x) - f(c) = g(x)(x - c),
$$

where $g(c) = f'(c)$.

Using the theorem above, show the following theorem:

Theorem 2. (Chain Rule) Let $f : [a, b] \rightarrow [d, e], g : [d, e] \rightarrow \mathbb{R}, c \in (a, b),$ $f(x) \in (d, e)$. Suppose f is differentiable at c and g is differentiable at $f(c)$. Show that the composite function $g \circ f$ is differentiable at c, and that

$$
(g \circ f)'(c) = g'(f(c)) \cdot f'(c).
$$

(c) What is the problem with the following "proof"?

$$
\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}
$$
\n
$$
= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}
$$
\n
$$
= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
$$
\n
$$
= \lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
$$
, since f is continuous at c .
\n
$$
= g'(f(c)) \cdot f'(c)
$$

- 2. (a) Show that if $f:(a,b)\to\mathbb{R}$ has strictly positive derivative at $c\in(a,b)$, then there exists $\delta > 0$ such that for any $c - \delta < x < c < y < c + \delta$, we have $f(x) < f(c) < f(y)$.
	- (b) With the same condition, could we get a stronger result that there exists $\delta > 0$ such that for any $c-\delta < x < y < c+\delta$, we have $f(x) < f(y)$? (Hint: Consider the function)

$$
f(x) := \begin{cases} x + 2x^2 \sin(\frac{1}{x}), x \neq 0\\ 0, x = 0 \end{cases}
$$

(c) Solution:

The function below satisfies $f'(0) = 1 > 0$ (by definition) but f is not increasing on any neighbourhood of 0.

$$
f(x) := \begin{cases} x + 2x^2 \sin(\frac{1}{x}), x \neq 0\\ 0, x = 0 \end{cases}
$$

Proof. Let $\delta > 0$ be arbitrary. Consider two points $x := \frac{1}{2n\pi + \frac{\pi}{2}}$, $y := \frac{1}{2n\pi - \frac{\pi}{2}}$ where *n* is large enough so that $0 < x < y < \delta$. And we have $f(x) - f(y) =$ $x + 2x^2 - y + 2y^2$.

REMARK: Correction on 15th Jan's tutorial Instead, to see $f(x)$ – $f(y) > 0$, just directly use $\frac{1}{x} - \frac{1}{y} = \pi$, we have $f(x) - f(y) = 2x^2 - \pi xy + 2y^2$ and Cauchy Schwarz inequality tells us the result. Hence f is not increasing on any neighbourhood of 0.

 \Box

- 3. We consider some explicit examples.
	- (a) Consider $f(x) := \sqrt{x}$ defined on $[0, \infty)$. Show that f is differentiable on $(0, \infty)$ but not at 0.
	- (b) Consider $f(x) := x \sin(\frac{1}{x})$ defined on $x \neq 0$ and $f(0) := 0$. Show that f is not differentiable at 0.
	- (c) Consider $f(x) := x^2 \sin(\frac{1}{x})$ defined on $x \neq 0$ and $f(0) := 0$. Show that f is differentiable everywhere on $\mathbb R$ but $f'(x)$ is not continuous.